A Flow-dependent Quadratic Steiner Tree Problem in the Euclidean Plane∗ M. Brazil

نویسندگان

  • C. J. Ras
  • D. A. Thomas
چکیده

We introduce a flow-dependent version of the quadratic Steiner tree problem in the plane. An instance of the problem on a set of embedded sources and a sink asks for a directed tree T spanning these nodes and a bounded number of Steiner points, such that ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A flow-dependent quadratic steiner tree problem in the Euclidean plane

We introduce a flow-dependent version of the quadratic Steiner tree problem in the plane. An instance of the problem on a set of embedded sources and a sink asks for a directed tree T spanning these nodes and a bounded number of Steiner points, such that ∑ e∈E(T ) f(e)|e| is a minimum, where f(e) is the flow on edge e. The edges are uncapacitated and the flows are determined additively, i.e., t...

متن کامل

On the History of the Euclidean Steiner Tree Problem

The history of the Euclidean Steiner tree problem, which is the problem of constructing a shortest possible network interconnecting a set of given points in the Euclidean plane, goes back to Gergonne in the early 19th century. We present a detailed account of the mathematical contributions of some of the earliest papers on the Euclidean Steiner tree problem. Furthermore, we link these initial c...

متن کامل

The Euclidean Steiner Tree Problem

The Euclidean Steiner tree problem is solved by finding the tree with minimal Euclidean length spanning a set of fixed vertices in the plane, while allowing for the addition of auxiliary vertices (Steiner vertices). Steiner trees are widely used to design real-world structures like highways and oil pipelines. Unfortunately, the Euclidean Steiner Tree Problem has shown to be NP-Hard, meaning the...

متن کامل

Locally minimal uniformly oriented shortest networks

The Steiner problem in a λ-plane is the problem of constructing a minimum length network interconnecting a given set of nodes (called terminals), with the constraint that all line segments in the network have slopes chosen from λ uniform orientations in the plane. This network is referred to as a minimum λ-tree. The problem is a generalisation of the classical Euclidean and rectilinear Steiner ...

متن کامل

Approximating minimum Steiner point trees in Minkowski planes

Given a set of points, we define a minimum Steiner point tree to be a tree interconnecting these points and possibly some additional points such that the length of every edge is at most 1 and the number of additional points is minimized. We propose using Steiner minimal trees to approximate minimum Steiner point trees. It is shown that in arbitrary metric spaces this gives a performance differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014